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Chapter 1

Passive Membrane

1.1 Diffusion

We will start considering diffusive processes that take place near the cellular
membrane. On the two sides of this structure, charged particles are constantly
moving thanks to Brownian motion, a process crucially dependent on the tem-
perature of the solution. The mean displacement of a particle 〈x〉 is given by:

〈x〉 =
√
Dt (1.1)

Since x is a length and t a time, we can easily figure out the units of measurement
for D:

[D] =
m2

s

The Einstein relation, which links diffusive processes with thermodynamic quan-
tities, tells us that the diffusive constant D is proportional to:

D = µkBT (1.2)

with the new constant µ. We know that kBT is an energy, measured in joules
(J), or newton-meter Nm. From this and from the units of D, we can find the
units of µ:

[µ] =
m2

s · J
=

m2

s ·N ·m
=

m

s ·N
=
speed

force

We can see that µ is a parameter that indicate how much a particle moves when
a force is applied to it.

1.1.1 Diffusive Currents

The change in the concentration of particles due to diffusive processes in a point
of the space is given by:

Jd = −D∇c (1.3)
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6 CHAPTER 1. PASSIVE MEMBRANE

Where c is the concentration of the molecule. In the monodimensional case the
this simply reduces to:

Jd = −D dc

dx
= −µkBT

dc

dx
(1.4)

1.1.2 Electric Currents

If we have a diffusive current of charged particles through channels in the mem-
brane, an electric field will be generated across the membrane1. In order to
derive the electric field that will be generated, we need to introduce the mem-
brane capacitance. The capacitance of the membrane tells us how many charged
particles have to be accumulated on one of its sides to produce a given potential
difference across its depth:

C =
Q

V
(1.5)

Capacitance has its own unit, the farad (F ). With a capacitance of 1 F , 1 C
(Coulomb) of charge will produce a potential difference of 1 V (volt).

The capacitance of a cell membrane depends on its surface: the bigger the cell,
the more we can spread out the charges thus reducing the electric field. To
account for this, we can introduce a membrane specific capacitance that gives
us the capacitance per unit of area:

Csp =
C

S

In neuronal cells its value is usually considered to be 1 µF
cm2 .

The electric field generated across the membrane will in turn affect the move-
ments of charged ions in the channel, producing a net electric current. In par-
ticular, since we know that the constant µ tells us the velocity of particles given
the force that acts on them, we can write the following equation for the electric
current across the membrane:

Je = µFec

Where c is the concentration of particles and Fe is the force acting on each
particle, which can be written as qE. Then:

Je = µFec

= µqEc

= µq
dV

dx
c (1.6)

Where for the last passage we used the definition of the electric field as the
spatial derivative of the potential.

1he volume that enclose the entire system is still electrically neutral, we only have an
electric field across the membrane.
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If we can assume a constant potential across a membrane of length d, which is
usually a valid approximation for the membrane, then we have:

Je = −µqV
d

c (1.7)

The total current once we consider both diffusive and electric currents will be:

J = Jd + Je (1.8)

1.2 Nernst Equation

We will start by considering only the equilibrium situation, in which the net
flow of charges is 0:

J = 0

By substituting equation 1.4 and equation 1.6 into equation 1.8, we get:

J = −µkBT
dc

dx
− µqV

d
c = 0 (1.9)

Then:

µkbT
dc

dx
= −µV

d
c

dc

dx
= − qV

dkBT
c (1.10)

This is a linear differential equation in c, with a simple exponential decay solu-
tion:

c(x) = c0e
− qV
dkBT

x
(1.11)

Where c0 is the concentration of the ion at the 0 point, i.e. the intracellular
compartment. Even if the concept of a ionic gradient across the membrane is
purely theoretical, we can use this equation to calculate the concentration of
the ion on the extracellular side. Remembering that d is the thickness of the
membrane,

c(d) = c0e
qV

dkBT
d

= c0e
qV
kBT (1.12)

We can than write the following relationship between the intracellular concen-
tration cin (or c0), the extracellular concentration cout (c(d)) and the potential
across the membrane:

− q

kBT
V = ln

(
cout
cin

)
V =

kBT

q
ln

(
cin
cout

)
(1.13)

Sometimes, this is written in units more familiar to chemists and by using E
(in this case NOT an electric field!) instead of V :

E =
RT

zF
ln

(
cin
cout

)
(1.14)

Note that in this final equation we are dealing with moles and not absolute
numbers of particles, but this will not affect the result after taking the ratio.
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R

E

C

intracell.space

extracell.space

Figure 1.1: The equivalent circuit

The simple scheme of the equivalent circuit for a membrane. The capacitance C is
equivalent to the total capacitance of the membrane, E is the potential generated by
the ions concentrations and R represent the channels that ions can use to cross the
membrane, generating a current according to the resistance of the channel.

Important remark: in this derivation we are considering the 0 of our poten-
tial to be in the intracellular side of the membrane. Usually the convention in
electrophysiology is to consider the 0 of the potential at the extracellular side.
This means that we switch the numerator and denominator in the concentration
ratios of equations 1.13 and 1.14, resulting in a sign change of the equilibrium
potential: 1.13 and 1.14

V =
kBT

q
ln

(
cout
cin

)
E =

RT

zF
ln

(
cout
cin

)

1.3 Equivalent circuit

1.3.1 Building the Equivalent Circuit

We now want to introduce a different representation if the membrane and diffu-
sion processes. We can deal with it in a much more tractable way by thinking
about it in terms of electrical elements. In the simple circuit that we will draw,
we will have a membrane capacitance C, a battery (the potential from the Nernst
equation) and a resistance, the channels where charges can cross the membrane.

We will start studying the current/voltage relation for the resistance R. If we
assume we are in an Ohmic regime (where the Ohm’s law V = RI holds), this
relation is linear 2.

2In general, near the zero we can always approximate this function as linear for the ionic
concentrations that we usually find in a cell. For ions that are strongly unbalanced, like Ca2+,
this approximation is not appropriate.
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R

E

CIext

intracell.space

extracell.space

Figure 1.2: Equivalent circuit with current source

The equivalent circuit with the addition of a current Iext that is controlled experimen-
tally.

We can than write:

I(V ) = gV + b

We know that by definition at the resting potential E the current through the
membrane is 0:

I(E) = gE + b = 0

Then b = −gE and
I(V ) = g(V − E) (1.15)

Here, g is the conductance of the membrane, a parameter that tells us how
strong is the current given the potential. It is the inverse of the resistance, and
it is measured in siemens:

S =
A

V
=

1

Ω
(1.16)

Now that we have the current/voltage relation for the resistence R, we can study
the equivalent circuit of fig. 1.1. In 1.2 we see a similar circuit where we have
added the possibility of injecting with an electrode a current Iext. In order to
satisfy Kirchhoff’s current law and maintain the conservation of charge, the sum
of all the currents at every node of the circuit must be 0. Then:

IC + IR − Iext = 0 (1.17)

Where the sign of the electric current that we inject is negative by convention.
The capacitative current IC is defined as:

IC =
dQ

dt
= C

dV

dt
(1.18)

IC is not a current flowing through the membrane: it just indicates the accu-
mulation of ions on the two sides of the membrane. It is induced by changes in
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x∗1 x∗2

x

F (x)

Figure 1.3: Graph of a sample function F (x) = dx
dt

voltage, and, in turn, describes how the membrane voltage changes in time as
ions flow across the membrane (i.e. as the capacitor is charged/ discharged).

Substituting this equation in equation 1.17 we get:

C
dV

dt
+ g(V − E) + Iext = 0 (1.19)

This is a differential equation where the dynamic variable is V , and we have
three parameters C, g,E, Iext.

1.3.2 Linear One-Dimensional Differential Equations

When we have a first-order (autonomous) differential equation, we have to solve
the general problem:

dx

dt
= F (x) (1.20)

Where x is a function of t. That is, by analysing the function F with respect
to the value of x we can see how the rate of change of x changes with respect
to x. Let’s take as an example the function F (x) represented in fig. 1.3. In this
example, F (x) crosses the 0 two times in x∗1 and x∗2. This means that at these
points the rate of change of the solution x(t) is 0, i.e. it is constant. For this
reason those two points are called stationary solutions or fixed points.

To see what happens when the value of x(t) is different from x∗1 or x∗2, we have
to study the sign of the function F (x). When it is positive, the rate of change of
x is positive and x is an increasing function of t. When it is negative, the rate
of change of x is negative and x decreases. This behaviour is represented with
the arrows of fig. 1.3. In this way we can see that if the function x(t) slightly
moves away from the point x∗1 in either direction it goes back to the fix point.
We call this fix point stable point. On the other side, when it moves from point
x∗2 it keeps moving away: this point is an unstable point.
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x∗2

x∗1

t

x(t)

Figure 1.4: Solutions for the differential equation of fig. 1.3 for different start-
ing values x0.

Fig. 1.4 shows the evolution over t of several solutions x(t) of this differential
equation. Here we clearly see that the evolution of this function depends on
the initial value x0. When it coincides with one of the two fix points x(t) is
constant. If x0 > x∗1 F (x) is positive and the solution diverges to infinity. For
x0 < x∗1, all the solutions converge to the stable point x∗2, as can be deduced
from the sign of F (x) around this problem. This can be alternatively stated in
terms of the derivative dF

dx :

d

dt
F (x∗) < 0 stable fix point

d

dt
F (x∗) > 0 unstable fix point

1.3.3 Passive Membrane

Now that we know how to deal with these simple differential equations we can
turn back to the problem of the passive membrane of eq. 1.19. Rearranging the
terms, we can obtain:

dV

dt
= −gV

C
+
gE + Iext

C
= −V

τ
+ J

Where

τ =
C

g
J =

gE + Iext
C

(1.21)

We can see that the rate of change dV
dt is a linear function of V , with a slope − 1

τ

and an x-intercept at V ∗ = τJ (fig.1.5). Moreover, since dV
dt is positive below

V ∗ and negative above, V ∗ is a stable fix point.
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V ∗

V

dV
dt

Figure 1.5: Graph ofdV/dt. The fix point V ∗ is always stable. A current
injection would shift this line upward.

We can also analyse how the stable solution change as a function of the initial
parameters. As we have seen:

V ∗ = τJ

Using the definition of J , in the case of Iext = 0:

V ∗ = τJ = τ
gE

C
= E

I.e., without an external current the resting potential E is a stable solution of
equation 1.19.

To find an explicit form for a full solution of this differential equation we will
try again to see if a given form

V (t) = AeBT + C (1.22)

can satisfy equation 1.19. Taking the derivative of V (t):

dV

dt
=

d

dt
(AeBt + C) = ABeBt (1.23)

If we plug this into equation 1.19 we get:

ABeBt = −A
τ
eBt − C

τ
+ J (1.24)

For this equivalence to hold the constant terms and the terms depending on t
must be separately equal:

ABeBt = −A
τ
eBt

0 = −C
τ

+ J
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It immediately follows:

B = −1

τ
C = τJ

A remains to be determined, since it is a free parameter that we set by fixing
the initial conditions for the potential:

V (0) = Ae−
0
τ +

J

τ
= A+

J

τ

It follows that:
A = V0 − τJ

Now we have:

V (t) = (V0 − τJ)e−
t
τ + τJ

= V0e
− t
τ +

(
gE

C
+
Iext
C

)
τ(1− e− t

τ )

= V0e
− t
τ +

(
E +

Iext
g

)
(1− e− t

τ ) (1.25)

Now let’s take a cell at the equilibrium potential E and inject a current Iext
with an electrode. Setting V0 = E we have

V (t) = Ee−
t
τ +

(
E +

Iext
g

)
(1− e− t

τ )

= E +
Iext
g

(1− e− t
τ )

For t→∞ this tends to

Vt→∞ = E +
Iext
g

= E +RIext

The velocity by which V (t) goes to this final value depends on the exponential
term, i.e. τ . The larger τ the slower the increment. We can see that the
resistance (and its reciprocal, the conductance) is a factor in both the important
parameters for this function: it influences the maximum depolarization as well
as the rate of depolarization.

1.3.4 Equivalent Circuit with Multiple Conductances

One approximation of our previous equivalent circuit model is that it considers
only one ionic species. The next step could be consider multiple ion channels,
each one with its resting potential and conductance.

We can start by considering a sodium-specific conductance (gNa, with the po-
tential ENa) and a ”leakage conductance” gL, with EL, that considers all the
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E

E + Iext
g

t

V (t)

Figure 1.6: Evolution in time of an equivalent circuit after application of the
external current Iext at time t = 0.

other ionic movements (mostly potassium). As shown in (fig. ). We only have
to add this new branch of the circuit to equation 1.19

C
dV

dt
= gL(EL − V ) + gNa(ENa − V ) + Iext (1.26)

= gLEL + gNaENa − (gL + gNa)V + Iext

= (gL + gNa)

(
gLEL + gNaENa

gL + gNa
− V

)
+ Iext

= gtot(Etot − V ) + Iext

As this expression is equivalent to equation 1.19, with two new constants that
consider all the conductances and the potentials:

gtot = gL + gNa

Etot =
gLEL + gNaENa

gL + gNa

Etot is a weighted mean of the two resting potentials, therefore it is always
bound to assume an intermediate value between them. For this reason, the
equation will always have a stable solution as equation 1.19. Note that this can
be repeated for every combination of passive channels we can introduce.

1.4 Voltage-Dependent Conductances

1.4.1 Voltage-Dependent Na Conductance

In real neurons, the most important conductances for the generation of the
action potential are voltage-dependent sodium channels. To start modelling
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dV/dt

V

ENaETEL

V(t)

t

ENa

ET

EL

Figure 1.7: (Left) Plot for dV
dt for a cell with an ideal voltage-dependent sodium

channel. Note how near the stable points EL and ENa the function tends to
the linear relation we have been studying before. (Right) Evolution in time of
a membrane with a voltage-dependent sodium conductance.

more interesting dynamics, we can think about introducing a voltage dependence
in our sodium conductance, now modelled as some simple function gNa(V ).
We will not deal with its analytical expression; for now it is enough to know
that it goes to 0 around the leakage resting potential EL (usually around -
60 mV) and tends to an asymptotic value gNa as the voltage increase. An
important assumption is that the asymptotic value of gNa is� gL. Substituting
in equation 1.19 we get:

C
dV

dt
= gL(EL − V ) + gNa(V )(ENa − V ) + Iext (1.27)

This time we cannot simplify the equation. To understand the stability of the
system we can study the function C dV

dt even without an analytical solution.

We will start by ignoring the current Iext. When it is close to EL the conduc-
tance gNa(V ) is close to 0, and the equation reduces to the case of the passive
membrane we have seen before, where the intercept has an abscissa of EL (left
dashed line of fig. 1.7). On the other hand, since gNa � gL, when the function
goes near to ENa it approximates a passive membrane with an intercept ENa
(right dashed line of fig. 1.7). It follows that near those zero points the function
has to approximate the simple passive membrane, i.e. it must have a negative
derivative. In order to do that, if we want it to be a ”well-behaved” differentiable
function it has to cross again the abscissa at some point EL < ET < ENa with
a positive slope (fig. 1.7). This provides the differential equation with another
fix point, but this time it is unstable. We will call it the threshold point : below
this value every starting value would lead the cell toward the resting potential
EL, and above it toward ENa.

The solutions for such a system are shown in fig. 1.7.

Now we can consider again the role of the applied current Iext. As reported in
the plot of fig. 1.8, its value shifts the curve up and down. This means that
changing it we can set the number of fix point solutions from three, to two, or
only one single solution. To represent this dependence we can use a bifurcation
diagram that shows the number and positions of the fixed solutions as a function
of the parameter Iext (fig. 1.8).



16 CHAPTER 1. PASSIVE MEMBRANE

V*

I

ENa

EL

ET

dV/dt

V

I1 > I0

I2 < I0

I0

Figure 1.8: (left) Shift of the curve of fig. 1.7 for different Iext values. Note
the changes in the x axix intercepts.(right) Bifurcation diagram showing the
behaviour of the stable solutions V ∗ as a function of Iext.

1.4.2 One-Dimensional Neuronal Models

In the previous section we have been qualitatively analysing the behaviour of
a system whose equation dV

dt we did not specify. Here are some examples of
how this function can be defined to determine the dynamics of a simple one-
dimensional model.

Leaky integrate-and-fire (LIF)

In this case, we use a simple passive membrane model with the leakage conduc-
tance gL and we set a spike voltage Vs. Every time that the neuron reach this
value we count one action potential, and we set again its voltage at a reset value
Vr.

Quadratic integrate-and-fire (QIF)

In the quadratic model we try to use a better approximation of a voltage-
dependent sodium channel, i.e. we try to preserve the fact that there is a
change in the slope of the curve dV

dt between EL and ET . This means that the
negative drive will become smaller near ET , instead of becoming always bigger
as in the LIF. Again, once we reach a threshold value we put back the cell to
the reset potential Vr. The equation for the potential derivative in this case will
be:

τ
dV

dt
= (V − ER)(V − ET ) + IR (1.28)

Note that since the growth of the derivative become supra-linear, even if we do
not reset the voltage it will become infinite in a finite amount of time (hyperbolic
growth). This makes the precise choice of the threshold point not too relevant
(it can be even infinite).
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Exponential integrate-and-fire (EIF)

The problem with the quadratic model is that it makes the arbitrary assumption
that the potential is symmetric around the point (ER + ET )/2 (the vertex of
the parabola). To make a slightly better model we can use something more
similar to the function we have plotted in fig 1.7. This can be done by using an
exponential term in the function for the voltage, such as:

τ
dV

dt
= (V − ER) + αe

V−ET
α + IR (1.29)

This model gives a more satisfactory description of the physiological properties
of a cell in the sub-threshold regime. Still, as long as we remain in the domain of
one-dimensional systems, we cannot properly derive the amplification followed
by the reset of the resting potential which characterize the full action potential.

1.5 Nernst Potential from Vokker-Planck Equa-
tion

We provide here a more complete derivation of the Nernst equation, in a frame-
work that will make possible to test the validity of the assumption (made in the
passive membrane model) about the Ohmic nature of the membrane conduc-
tance.

1.5.1 Continuity Equation

We start by the same simplified one-dimensional sketch for the membrane ge-
ometry we used in section 1.3.3: we have a membrane of width d that divides
the outside of the cell (x < 0) from the inside (x > d). In any arbitrary interval
of this space we can calculate the number of particles as:

N(t) =

∫ b

a

C(t, x)dx (1.30)

Where C(t, x) is the concentration of particles for each x at the time t, and
we assume that it can change in time. For it to change in time we must have
an inflow or an outflow of particles at the boundaries of the considered interval
[a, b]. If the particles are charged, we can indicate these flows as the currents at
the two boundaries Ja(t) and Jb(t). Therefore:

dN(t)

dt
=

∫ b

a

∂C(x, t)

∂t
dx = Ja(t)− Jb(t) = −

∫ b

a

∂J(x, t)

∂x
dx (1.31)

Where the sign in the current difference depends on the arbitrary definition of
positive current flowing from low to high x, and the last identity holds for the
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fundamental theorem of calculus. Since [a, b] is an arbitrary interval that can
be made arbitrary small, we can eliminate the integrals to get:

∂C(x, t)

∂t
= −∂J(x, t)

∂x
(1.32)

This equation is called continuity equation. It states that any change in particles
concentration in time in one point of the space corresponds to a change in the
derivative of the current in that point of the space, as we have discussed in
section 3.4. In more than one space dimensions this generalizes to:

∂C(x, t)

∂t
= −∇ · J(x, t) (1.33)

1.5.2 Vokker-Planck Equation for the Cellular Membrane

We have already seen that the current J can be divided in two components: a
purely diffusive one, that depends on a non-homogeneous distribution of par-
ticles in the space, and an electric one, that corresponds to a drift under the
effect of some electric potential φ(x, t). If the potential is constant in time
(φ(x, t) = φ(x)), remembering the derivations made in section 1.3.3, we can
write:

J = Jel + Jdiff = −C(x, t)µq
dφ(x)

dx
− µkbT

∂C(x, t)

∂x
(1.34)

If we remain in the membrane interval [0, d] and we assume that in this region

the potential decrease in a linear way, we know that −dφ(x)dx = −Vd , where V is
the potential difference between the inside and the outside of the cell. We can
plug this definition of the current in the continuity equation to get:

∂C(x, t)

∂t
= −∂J(x, t)

∂x
=
µqV

d

∂C(x, t)

∂x
+ µkbT

∂2J(x, t)

∂x2
(1.35)

This is an example of a Fokker-Planck equation, a partial differential equation
that describe the time evolution of the distribution of particles under the effects
of Brownian motion and a drifting force, in this case electrical.

1.5.3 Solutions of the Vokker-Planck at Equilibrium

We can try to have a look at the equilibrium states of the system, i.e. states
that do not change over time. For an equilibrium state:

∂C(x, t)

∂t
= 0

∂J(x, t)

∂x
= 0
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This means that the current is constant, with a value that we can call J0. We
can substitute these values in equation 1.34 and divide by µkbT to get:

J0
µkBT

= − qV

µkBT
C(x)− dC(x)

dx
(1.36)

This is the same linear differential equation for C(x) we have seen in sec-
tion 1.3.3, which has a solution:

C(x) = C(0)e
−qV
kBT

x
d − J0d

µqV
(1− e

−qV
kBT

x
d ) (1.37)

We can use this function to find an expression for the ion concentration in the
cell, which correspond to C(d) and is a value that we can evaluate experimen-
tally:

C(d) = C(0)e
−qV
kBT

d
d − J0d

µqV
(1− e

−qV
kBT

d
d )

From here, we can obtain an explicit expression for the steady current across
the membrane J as a function of the membrane potential difference V:

J(V ) =
µqV

d

Cd − C0e
−qV
kBT

1− e
−qV
kBT

Where Cd and C0 are C(d) and C(0). To have a nicer form, we can finally use a
rescaled voltage u defined as u = q

kBT
, identical to V but for a constant scaling

term.

J(u) =
kBTµ

d
u
Cd − C0e

−u

1− e−u
(1.38)

1.5.4 GHK Flux Equation

In equation 1.38 kBTµ
d is a constant term that scales the amount of current

given the potential u. Therefore we will call it P , or permeability constant.
Multiplying everything by eu we get the final form:

J(u) = Pu
C0 − Cdeu

1− eu
= P

u

1− eu
(C0 − Cdeu) (1.39)

This equation is called the Goldman–Hodgkin–Katz (GHK) flux equation (not
to be confused with the Goldman–Hodgkin–Katz voltage equation). To write
the passive membrane equations, we have assumed that this dependence was a
linear one, i.e. that J(u) = g(V − E) where E was the resting potential of the
considered ionic specie.
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Figure 1.9: Graphics for the GHK flux equation with C0 > Cd (left) and
Cd > C0 (right).

We need to see when the equation that we have obtained for J(u), which is not
linear, can be considered reasonably linear under some limit approximation. For
example, we can start by analysing what happens near the reversal potential, the
potential at which the current across the membrane cross the zero and changes
its sign. This means that we have to look at 0-crossing points of equation 1.39.
We can analyse separately the two terms x

1−ex and (C0−Cdeu). The first term
is always negative, and for x→ 0 goes to:

lim
u→0+

u

1− eu
= lim
u→0+

1

−eu
= −1 lim

u→0−

u

1− eu
= lim
u→0−

1

−eu
= −1

Where to solve the indefinite limit we have turn to l’Hôpital’s rule. Note that
even if both limits are behaving properly, strictly speaking the function is not
defined for x = 0, but it is a discontinuity of the first type and it can easily be
dealt with by defining separately the 0 value of the function.

The 0 crossing therefore must be given by the second term, (C0 − Cdeu). By
setting this equal to 0, we find:

u = ln

(
C0

Cd

)
(1.40)

And this formula is equivalent to the Nernst equation.

Now we can look at the limits for u→ ±∞ to draw this function.

lim
u→+∞

Pu
C0 − Cdeu

1− eu
= PCdu

lim
u→−∞

Pu
C0 − Cdeu

1− eu
= PC0u

For both ±∞ we have two linear asymptotes with different slopes that are
proportional to the external and internal concentrations. This behaviour is
shown in Figure 1.9 for both C0 > Cd and Cd > C0.
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Figure 1.10: Graphics for the GHK flux equation with C0 ∼ Cd (left) and
C0 � Cd (right).

1.5.5 GHK Flux Equation and the Ohmic Approximation

For our linear approximation J ≈ g(E − V ) to hold around the Nernst poten-
tial, the two lines must have a similar slope. This means that the two ionic
concentrations cannot be too different from each other. This can be graphi-
cally appreciated in Figure 1.10: when the two lines are extremely different, the
bending around the zero crossing makes the error of the linear approximation
bigger. This is for example why the GHK flux equation is used to calculate the
resting potential for the Ca2+ ion, since the intracellular concentration is or-
ders of magnitude lower than the extracellular concentration. For all the other
ions though the Ohmic approximation does not depart too much from the GHK
curve.

1.5.6 GHK Potential

Finally, we can use this equation to derive the current flow when the membrane
is permeable to more than one chemical specie. In this case,

Jtot =
∑
x

Jxqx =
∑
x

q2xPx

V
kbT

1− e
qxV
kbT

(Cx(0)− Cx(d)e
qxV
kbT ) (1.41)

Where qx and Px are the charge and the permeability of each specific ion.

This cannot be always simplified. But in the special case that we have when all
the qx have the same absolute value, we can find an expression for the voltage
that makes the total current Jtot = 0. With some algebra we obtain:

VGHK =
kbT

|z|e
ln

(∑
x,z>0 PxC

out
x +

∑
x,z<0 PxC

in
x∑

x,z>0 PxC
in
x +

∑
x,z<0 PxC

out
x

)
(1.42)

And this is the famous GHK potential, where the resting potential is calculated
keeping into account the permeability of the cell to each of the involved ionic
species.



22 CHAPTER 1. PASSIVE MEMBRANE



Chapter 2

Hodgkin-Huxley Model

2.1 Voltage-gated Channels

2.1.1 Gating Variables

In the previous section an important approximation that we were using is that
the changes in the conductances were instantaneous. In the true biophysical sit-
uation, the opening of a channel require a conformational change in the protein,
a process that is described by its own temporal kinetics. If we want to take this
into account, we need to introduce a gating variable x that tells us at any time
t what is the fraction of open channels (it goes from 0 to 1). In this way, to
describe the temporal evolution of the opening of the channel, we need to write
the differential equation for x.

To describe its dynamics, we need to introduce an opening rate (αx(V )) and
a closing rate βx(V ). They are a function of V since we know that the gating
process will depend on the voltage of the cell membrane. If we assume that the
gating process follows a fist-order kinetics, the evolution in time of x will be
described by:

dx

dt
= (1− x)αx(V )− xβx(V )

Where (1−x) is the fraction of closed gates, and x is the only dynamic variable.
By rearranging it we can write

dx

dt
= αx(V )− x(αx(V ) + βx(V ))

dx

dt
= αx(V )− x

τx(V )

τx(x)
dx

dt
= τx(V )αx(V )− x

τx(x)
dx

dt
= x∞(V )− x

23
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Where:

τx(V ) =
1

(αx(V ) + βx(V ))

x∞(V ) = τx(V )αx(V )

This is a very simple differential equation of the same type we have encountered
before, with a linear dependence of the derivative of the function on the function
itself. it will be a stable solution at x = x∞(V ), and it will always converge
to this value (derivative is always negative) with a time constant τx(V ). The
bigger the time constant, the slower the process.

2.1.2 Gating of the Sodium Channel

Hodgkin and Huxley, studying the dynamics of the sodium channel, came up
with a model for its kinetics with two different mechanisms: an activation gate
m and an inactivation gate h. Each of these gates is voltage sensitive, with its
own parameters; therefore we will have two equations:

dm

dt
=
m∞(V )−m

τm(V )
(2.1)

dh

dt
=
h∞(V )− h
τh(V )

(2.2)

(2.3)

The two gating variables m and h compose together to give the equation for the
total sodium conductance gNa(t):

gNa = gNam
3(V )h(V )

In this function, the activation gating variable m has an exponent 3 as a result
of the fitting of the experimental data. One possible way to interpret this is
to think that there are three independent gates of the type m and one of the
type h on each channel protein, and they all have to be open for the channel
to have non-zero conductance (i.e., their probabilities multiply). Still, since the
motivations for the choice of the exponent 3 are purely experimental and do not
derive from considerations on the structure of the channel, this interpretation
should not be taken too literally. Modern models include often other values
between 2 and 3.

Now we can have a look at the voltage dependences of the two gating variables
(fig. 2.1). The limit value h∞(V ) for the activation gate starts at 1 for low
voltages and it decreases to 0 for increasing voltages; on the other hand, m∞(V )
will start at 0 and increases to 1 for high voltages. To be more precise, since the
conductance is dependent on the cube of the gating variable m in the equation
we should look at the graph for m∞3, which grows slightly less than m∞. There
is a window of voltages in which both curves are much higher than 0; this can be
seen in the graphic for the limit value of the total sodium conductance g∞Na(V )
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Figure 2.1: (top) voltage dependency of the gating variables parameters
m∞(V ) and h∞(V ); (bottom) voltage dependency of the resultant limit con-
ductance g∞Na(V ).
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Figure 2.2: Numeric values for the limit value (left) and time constant (right)
for the sodium activation, the sodium inactivation and potassium gate. Note
that these values change with channel type and specific neuron physiology (from
Dynamical Systems in Neuroscience; Eugene M. Izhikevich, 2007).

that combines the previous two functions. As for the time constants τm(V )
and τh(V ), the most important thing is that the former is much faster than the
latter, as can be appreciated in fig. 2.2.

2.1.3 Voltage-clamp Experiments

Now we can try to figure out what happen with an ideal voltage-clamp experi-
ment, i.e. an experiment in which we assume to be able to adjust instantaneously
the voltage of the cell to a desired value (fig. 2.3). In such an experimental con-
dition, we can think of moving a cell at its resting potential E toward a voltage
value V0 around 0. The value of m(V ) is initially 0 since m∞(E) ∼ 0. With
increasing voltages it will exponentially go to m∞(V0) (slightly less than 1 for
V0 ∼ 0) with a time constant τm(V0). The value of h(V ) (initially 1) will ex-
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Figure 2.3: Ideal voltage clamp experiment. From top to bottom: the voltage
step that we apply to the cell; time evolution ot the gating variable m(V ) (note
the difference of the cubic term); time evolution ot the gating variable h(V );
combination of the two gating variables in the total conductance gNa(V )

ponentially go to h∞(V0) (slightly more than 1 for V0 0) with a time constant
(τhV0 < τmV0).

If we now look at the composition of these two different functions that determine
gNa we will have two opposite dynamics: in the beginning the fastest time
constant for the activation gate will drive an initial increase in the conductance;
after some time, this will be followed by a decrease in the conductance due to
the slower action of the inactivation channel, that will drive the conductance to
0 or to a similar value according to the choice of V0. If we plot the value reached
by gNa at its peak, we can have the graphic of figure (fig. 2.4). For small values
of V0 it will be almost 0, than it will increase to stabilize eventually around
a constant value. Now that we have described the voltage dependency of the
sodium conductance, we can draw the I/V curve for this ion (measured at the
time of the conductance peak), that is a product of the conductance and the
driving force of the ion. The result can be appreciated in fig. 2.5. It is almost
0 for low voltages, it goes to negative values as soon as the conductance begins
to increase (the voltage is still lower than the equilibrium potential for sodium),
and it follows a linear relationship g(V − E) when we reach the limit value of
the peak conductance gpeak.

2.1.4 Gating of the Potassium Channel

The potassium channel has a much simpler dynamics, in that it has only an
activation gate (modelled by the gating variable n). Experimental results show
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gpeak(V)

50 V-50

Figure 2.4: Peak value reached by gNa(V ) in the voltage clamp experiment.

Ipeak(V)

VEL ENa

Figure 2.5: Voltage/current plot for the voltage-gated sodium conductance

that sodium conductance is proportional to n4:

gK(t) = gKn
4(t)

with

τn(V )
dn

dt
= n∞(V )− n

The graphic of this function and its fourth power is very similar to the sodium
gating variable parameter m∞(V ), as can be seen in fig. 2.2. The I/V curve for
potassium currents is represented in fig.2.6: the higher the voltage the more the
slope of the true current get close to the ideal linear relationship of a voltage
independent potassium conductance.

IK peak(V)

V

EK

Figure 2.6: Voltage/current plot for the voltage-gated potassium conductance



28 CHAPTER 2. HODGKIN-HUXLEY MODEL

2.2 Building the H-H model

2.2.1 Conductances Functions

The functions that we will use for describing the conductance kinetics (m∞(V ),
τm(V ), etc.) will simply be fits on electrophysiological recordings. One typi-
cal model function for an activation curve (for example n∞(V )) is a sigmoid
function:

n∞(V ) =
1

1 + e−
V−V0
k

(2.4)

This function has the limits that we expect, in that:

lim
V→+∞

n∞(V ) = 1

lim
V→−∞

n∞(V ) = 0

And the parameters that describe the steepness and the flexing point of the
curve (k and V0) are easily fitted from experimental data. There may be other
possible functions used in more advanced models, but even a simple sigmoid
catch the salient features of the behaviour of the conductance.

2.2.2 H-H Equations

Now we have all the ingredients to compose the full H&H model. As we have
previously seen, for the equivalent circuit of the cell we can use the Kirchhoff’s
current law to write:

C
dV

dt
+ IL + IK + INa = Iext (2.5)

Where:

IL = gL(V − EL) (2.6)

INa = gNa(V − ENa) = gNam
3h(V − ENa) (2.7)

IK = gK(V − EK) = gNan
4(V − EK) (2.8)

And the evolution in time of the gating variables m, n and h will be given by:

τm(V )
dm

dt
= m∞(V )− n

τhV )
dh

dt
= h∞(V )− n

τn(V )
dn

dt
= n∞(V )− n

The full H&H system will therefore be:
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dm

dt
=
m∞(V )− n
τm(V )

dh

dt
=
h∞(V )− n

τhV )

dn

dt
=
n∞(V )− n
τn(V )

dV

dt
=

gL
Cm

(V − EL) +
gNa
Cm

m3h(V − ENa) +
gNa
Cm

n4(V − EK) +
Iext
Cm

This is a 4-dimensional dynamical system - i.e., a system of differential equations
(in this case, ordinary differential equations) that describe the evolution over
time of 4 different variables..

2.2.3 Qualitative Analysis of Spiking in the H-H Model

The qualitative evolution of the four variables during an action potential is de-
scribed in figure 2.7. When an external current is applied through an electrode,
there is a initial depolarisation of the cell. This depolarisation recruit quickly
the fast gating variable m(t); this, in turn, sustains and amplifies the depolari-
sation even after the end of the current injection thanks to the flow of sodium
ions. This self-amplified depolarisation gives rise to the upstroke of the action
potential. After a while, two other events with slower timescales and activat-
ing voltages take place. On one side, the depolarisation trigger the closing of
the slow gating variable h(t) of the sodium conductance, which determines the
closing of previously opened sodium channels. On the other, slow potassium
conductances are opened (gating variable n(t)) and mediate the repolarization
of the cell. The repolarization does not stop at the resting potential: since a
large number of potassium conductances are recruited, the cell temporarily goes
to a voltage closer to the potassium resting potential (more negative than the
resting potential). This produces the so-called after-hyperpolarization.

Two things prevent the immediate repolarization of the cell. Initially, in the
absolute refractory period, sodium conductances are still inactivated, and the
gating variable h is still closed, and the generation of a new spike is completely
blocked. Then, even when all h(t) gates are opened again, the hyperpolarization
of the cell due to the potassium conductances is still present, and stronger inputs
will be required in order to trigger the action potential. This is the so-called
relative refractory period.

2.2.4 Generalization of the H-H Model

The current-balance equation we wrote (equation 2.5) is valid for an arbitrary
number of currents that contribute to the membrane voltage:

C
dV

dt
+
∑
x

Ix = 0 (2.9)
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Figure 2.7: Time evolution of membrane potential and ionic conductances
during an action potential as described by the H&H equations (see text for
description).
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where Ix can include many sodium, potassium, chloride, calcium currents, each
with any kind of complicate dependence on voltage or other factors, and it can
be expressed in a general form as:

Ix = gx
∏
k

ankk (V − Ex) (2.10)

Were the productory on k take into account an arbitrary number of gating
variables ak with exponents nk. this can be very useful to provide numerical
description for different cells having particular firing patterns that emerge as
the combination of specific types of ionic conductances with different gating
mechanisms.

2.3 2D Reduction of H-H Model

We have seen that in the H&H model we have 4 dynamical variables interrelated
in a dynamical system (V (t), g(t), h(t) and n(t)). To analyse the behaviour of
this system we would like to describe it in the terms we were using for simpler
1-D differential equations (find fixed points, draw the bifurcation diagram, etc.),
but the number of dimensions make this hard. One possible approach is trying to
reduce the dimensionality of the system while preserving its salient features. A
possible approach for this simplification starts by noting that the four variables
involved in the H&H model have two different time scales: Those variables are
characterized by different time scales:

• V and m have fast time constants;

• h and n have slow time constants.

We can think about reducing the four-dimensional system to one 2D system
with two variables that sums up the slow and fast dynamics of the system.

For example, if by looking back at equation 2.1 we know that the derivative of
the sodium conductance in time is:

τm(V )
dm

dt
= m∞(V )−m (2.11)

Since we know that the time constant for the sodium τm(V ) is always small
compared to τn(V ) and τh(V ), we can assume m to be always at its equilibrium
value m∞(V ):

m ≈ m∞(V (t)) (2.12)

A more complicated approach must be taken for the two slow variables. Since
they both have a slower dynamics, we can assume that they are similarly always
at equilibrium with a new dynamical variable U(t) with the same dimensionality
as V (t) and a slower temporal evolution:

n(t) ≈ n∞(U(t))

h(t) ≈ h∞(U(t))
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Now the problem is to find a function for relating U and V , which supposedly
should take into account also all the numerical parameters that we include
in the H&H model. To do this, we will use a simplified argument based on
(Kepler&Abbott, 1992).

As a starting point, we can use the current balance equation (equation 2.9) to
derive a function F that binds the dynamical variables of the original H&H
system:

dV

dt
= −

∑
x Ix
C

(2.13)

This equation lets us define the function F as:

dV

dt
= −

∑
x Ix
C

= F (V,m, n, h) (2.14)

So far we have not introduced any simplification. Now, if our hypothesis is true
though, we can assume it exist another function that approximates F 1

F (V,m(V ), n(V ), h(V )) ≈ f(V, m̄(V ), n̄(U), h̄(U)) (2.15)

Now our aim is to prove that there exists an expression for dU/dt, under the
above assumptions. Once we have it, we just need to plug it into the functions
for n̄ and h̄ (fitted on experimental data) to describe entirely the model.

The general strategy is based on the fact that if the approximation holds true:

dF

dt
=
df

dt
(2.16)

We start by defining dF/dt using the multivariate chain rule:

dF

dt
=
∂F

∂V

dV

dt
+
∂F

∂m

dm

dt
+
∂F

∂h

dh

dt
+
∂F

∂n

dn

dt
(2.17)

Since V and m will reach their equilibrium value almost immediately compared
to h, n and U , we can treat them as constants. In this way dV/dt and dm/dt
are zero. So we are left with:

dF

dt
=
∂F

∂h

dh

dt
+
∂F

∂n

dn

dt
(2.18)

Note that here n and h are functions of the voltage V (n(V ) and h(V )). At this
point, we need to know dh/dt and dn/dt. In the original H&H model, we have
the two equations:

τn(V )
dn

dt
= n̄(V )− n (2.19)

τh(V )
h

dt
= h̄(V )− h (2.20)

(2.21)

1x̄ will be used instead of x∞
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Substituting here our simplifications n ≈ n̄(U) and h ≈ h̄(U), we find:

τn(V )
dn

dt
= n̄(V )− n̄(U) (2.22)

τh(V )
dh

dt
= h̄(V )− h̄(U) (2.23)

(2.24)

Substituting everything in equation 2.18 we get:

dF

dt
=
∂F

∂n

(
n̄(V )− n̄(U)

τn(V )

)
+
∂F

∂h

(
h̄(V )− h̄(U)

τh(V )

)
= A(V,U) (2.25)

Where ∂F/∂h and ∂F/∂n are to be evaluated at h̄(U) and n̄(U).

To find the derivative for the approximated function f we can use the chain rule
in a similar way to write:

df

dt
=
∂f

∂V

dV

dt
+
∂f

∂m̄

dm̄

dt
+
∂f

∂h̄

dh̄

dt
+
∂f

∂n̄

dn̄

dt
(2.26)

We can eliminate the V and m term as in equation 2.17. In this way,

df

dt
=
∂f

∂h̄

dh̄

dt
+
∂f

∂n̄

dn̄

dt
(2.27)

Because, by our above assumptions, h and n are functions of some variable U(t),
we can again apply the chain rule to get:

df

dt
=
∂f

∂h̄

dh̄

dU

dU

dt
+
∂f

∂n̄

dn̄

dU

dU

dt
=
dU

dt

(
∂f

∂h̄

dh̄

dU
+
∂f

∂n̄

dn̄

dU

)
=
dU

dt
B(V,U) (2.28)

Thus:

dF

dt
=
df

dt
(2.29)

A(V,U) = B(V,U)
dU

dt
(2.30)

And we arrive to our complicated expression for the U derivative:

dU

dt
=
A(V,U)

B(V,U)
= g(V,U) (2.31)

Where:

A(V,U) =
∂F

∂n

(
n̄(V )− n̄(U)

τn(V )

)
+
∂F

∂h

(
h̄(V )− h̄(U)

τh(V )

)
(2.32)

B(V,U) =
∂f

∂h̄

dh̄

dU
+
∂f

∂n̄

dn̄

dU
(2.33)

Therefore there exists and expression for dU/dt that is a function of V and U .
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Our final system will then contain the expressions for the derivatives of V and
U :

dV

dt
= f(U, V )

dU

dt
= g(U, V )

2.3.1 2D Dynamical Systems

We have to analyse now the two dimensional system described by the equation:

d

dt

(
V (t)
U(t)

)
=

(
f(V,U)
g(V,U)

)
= R(V,U) (2.34)

To think about this system we need to introduce the concept of phase space.
The phase space for the system in equation 2.34 is the plane containing all the
couple of values (U, V ). The state of the system at the time t will be determined
by the pair of values of the two dynamic variables ((U(t), V (t))). Consequently,
we can think about the evolution in time of the system as a trajectory described
in the phase space, containing every point (U(t)V (t)) touched by the system
at the time t during its evolution, as depicted in fig. 2.8. In one-dimensional
systems we have been studying the plot of the derivative as a function of the
state of the system (for example in fig.1.3). Here, we have to extend to two
dimensions that line of thinking.

Let’s assume we know that the system at t0 is at the initial point (V0, U0). For
each of the two dynamic variables we want to know what will happen next.
Will it increase? Will it decrease? To find out we need to know what is the
value of the derivative of that dynamic variable at the time t0. This is exactly
what is expressed in equation 2.34: here the vector of the derivatives of the
two dynamic variables is expressed as a function of the two dynamic variables
themselves. This means that this equation associates a vector (dVdt ,

dU
dt ) (also

called R(V,U)) to every point (V,U) in the phase space; therefore, it describe a
two dimensional vector field on the phase space. We can visualise a vector field
as a collection of arrows with a given magnitude and direction, each attached
to a point in the plane. Each state of the system (a point in the phase space)
will be associated with an arrow, the vector R(V0, U0) from this vector field.
This arrow is exactly what will describe for us the evolution of the trajectory
of system at the next temporal step (fig.2.8). If the system at t0 is at the point
(V0, U0), in the next temporal step dt it will moves in the direction of the arrow
R(V0, U0). This means that the trajectory of the system in the phase space is
at each time t tangent to the vector field R.

In our previous analysis the zero crossings of the function for the derivatives
played a central role: they were telling us where the fix points of the system
were. Those points were stable or unstable, depending on the slope of the
function at the zero crossing. In our two-dimensional system the equivalent for
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Figure 2.8: Phase plot for a dynamical system in the two variables U and V.
The evolution of the system at various times t = 0, 1, 2.. is represented by the
continuous line; dashed lines indicate the nullcines for the two variables. Note
that the nullclines divide the space in subregions where the orientation of the
arrows of the vector field is roughly the same.

these fix points are the points in the phase space at which the derivative (i.e.,
the vectors of the vector field) is zero along one or both dimensions.

To find them we just have to write:

d

dt

(
V (t)
U(t)

)
=

(
f(V,U)
g(V,U)

)
=

(
0
0

)
(2.35)

The solutions of this equation are described by the two implicit equations:

g(V,U) = 0

f(V,U) = 0

Let’s focus on the first equation. It tells us that for every point (Vi, Ui) for which
f(Vi, Ui) = 0 the derivative with respect to the first dimension V will be 0 -
this means that the vector field component along this dimension is 0, and in the
following time step dt the system can move only along the dimension U . If the
equation f(Vi, Ui) = 0 has an explicit form2 , these points will be the values of
some function U = fV−null(V ) plotted on the phase space. We will call the line
represented by this function as the nullcline of V : on this line, the derivative
with respect to V will be 0, and every time we cross this line the sign of this
derivative will change. This happens in the graph presented in fig.2.8. Here the
V nullcline is a cubic curve on the phase space. Below it, all the arrows are
pointing right; above it, they point left. When we are exactly on the nullcline

2This is not necessarily true. In this form, the equation in general describes a manifold,
not a function. (To think about that, consider the circle of equation x2 + y2 = 1. It is not
a function - for each value of x there are two possible values of y, and has no explicit form
y = f(x). It is a manifold. On the other side, y − x = 0 has an explicit form y = x, therefore
it can describe a function)
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the arrows will have no left-right component: the system can move only up or
down, along the U dimension.

The nullclines for each dimension will not be fix points: the system (its trajec-
tory in the phase space) will keep moving along the other dimension. A special
case is represented by the crossing of the two nullclines: at these points the
vector field will be 0 along each dimension. This means that these points will
be the fix points of our system: once the trajectory reach one intersection of the
nullclines, the vector field that drives it is 0 on that point and the system will
remain there, at equilibrium.

Moreover, we can think of the nullclines as partitioning the phase space into
several regions; in each region, the vectors of the vector field R will all point
roughly in the same direction (north-east, south-west, etc.). We can easily
imagine that if around the fix point the vector field arrows will be pointing
toward it in every surrounding region, the fix point will be stable; perturbations
around it will be always pushed back to the fix point. On the other hand, if
vectors around the fix point are pointing outward, displacements from this point
will be amplified and the system will move far from the equilibrium point: in
this case the fix point will be unstable.

Supplementary note: in the two-dimensional case the fix point can behave in
more interesting ways than just being stable or unstable. We can have a fix point
that is stable for movements on one direction, but unstable for movements on
the other; or we can have fixed points around which the system will periodically
oscillate remaining always in the same orbit; finally, we can have points around
which the trajectory of the system will ”swirl”, either inward toward the point
(stable focus) or outward (unstable focus). To know exactly what kind of fix
point our fix point will be, we have to linearise the system around the fix point
and analyse the eigenvalues of the matrix that describe our new linear system.
For a more detailed (but still intuitive) dissertation see (Dynamical Systems in
Neuroscience, Eugene M. Izhikevich, 2007, Chapter 4).

2.3.2 Phase Plot for the Reduced H-H Model

The phase plot of fig. 2.9 is the system that describe our simplified two-dimensional
system (we have not specified so far the two functions g(V,U) and f(V,U), so
note that you have to trust Kepler&Abbott about the fact that those nullclines
actually correspond to g(V,U) = 0 and f(V,U) = 0). But we will not bother
with finding a form for them, and we will start our analysis taking for granted
this shape of the vector field and the nullclines. As we were mentioning, the four
regions divided by the V and U nullclines correspond to different orientations
of the vector field. in the figure there are also some examples for trajectories
starting at different points: we can clearly see that the trajectory swirls inward
around the fix point: this means that the point is a stable focus. No matter
how far we will move the system from its fix point, it will always come back to
that state.

Now, we want to see what happens to our system when we inject a current,
as we were doing in the one-dimensional case. Firstly, note that injecting a
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Figure 2.9: Phase plot for the symplified H&H model, built from the two
equations for g(U, V ) and f(U, V ), with no current injection. The trajectory
of the system starting from three different points a,b and c is represented by
the dash lines. Note that in every case it converges to the resting value V∗, the
intercept of the two nullclines.
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Figure 2.10: Phase plot for the symplified H&H model, built from the two
equations for g(U, V ) and f(U, V ), with current injection. The trajectory of the
system starting from the two points a,b is represented by the dash lines. In
both cases the system move far from the fix point and get attracted by the limit
orbit.
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current will change only one of the two nullclines: remember that the expression
for g(V,U) came out of a time derivative, which eliminates an eventual Iext
constant in time3. Therefore, an increasing current will simply move the V
nullcline upward. The phase plot for the system with the current injection is
represented in fig. 2.10 As we can see from the trajectories starting from the two
points a and b, now even small deflections from the fixed point V ∗ will make
the system move far from it. It will not move indefinitely far: as we can see in
the figure there is a cyclic attractor, a circular orbit where the system will get
caught. As long as the current is injected in the neuron, it will remain in this
cyclic orbit - i.e., it will be firing. How can we see this from the graph?

By looking at the trajectory in fig. 2.10 we can know what part of the action
potential is described by each part of it: the sharp transition leftwards (an
increase in the voltage variable V ) is the upward stroke, and the transition
rightwards is the repolarisation. Note that the slowest transition is the one on
the left of the V -nullcline. Here the system stays for a long time close to a
nullcline: here the amplitude of the vectors of the vector field are low, and this
translates into a slow time evolution of the system. This corresponds to the time
during which the neuron is back to the resting potential, and it is depolarizing
again until reaching threshold. Therefore, the time spent on this part of the
trajectory will determine the firing frequency of the neuron.

If we imagine of gradually increasing the current, we can expect to have a certain
threshold current I upon which there is a transition: for I < Ithr the trajectory
swirls inward; for I > Ithr the trajectory swirls outward to the cyclic attractor.
This means that at this critical point at which we encounter a bifurcation,
similarly to what we where seeing in the one-dimensional case. At this value,
the fix point changes from a stable focus to an unstable focus4; this transition
is called a Hopf bifurcation.

Supplementary note: looking at the graph one may have the intuition that
the transition depends on the slope of the V -nullcline at the intercept with the
U -nullcline, that from negative become positive. This is true only if the case
when the U -nullcline is perfectly vertical; for every other situation it is not
necessarily true - the only way to know is to compute the eigenvalues of the
system linearised around the fix point. Anyway, when U � V , that is usually
the case for this system, this become negligible, and the transition happens
almost at the local minimum of the V-nullcline.

2.4 Type I and Type II neurons

We have seen that depending on the level of the current injection, the intersec-
tion of the two nullclines will move and this will determine a transition from
a stable fix point to a unstable fix point with a limit cyclic attractor. This

3Put in another way, we assume that and injected current will change the voltage so quickly
compared to changes in U, that we can treat is as a constant when trying to find an expression
g(V,U) = dV/dt.

4The system is not completely divergent, it enters a stable limit cycle.
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corresponds to what we were seeing in the one-dimensional case, and it is again
an Hopf bifurcation.

Note: To be precise, the transition can be also subcritical, i.e. there are
certain currents that produce both a stable fix point and a limit attractor, and
the system will converge to one of the two depending on the initial condition. In
this case in the phase space we can distinguish with a separatrix the region where
the system will be attracted by the fix point from the region where the system
will be attracted by the cyclic orbit. This is again negligible when U � V .

What we now want to see is how this is linked to the experimental observation of
neuronal firing in response to currents. This is done by computing the so called
F/I curve, where the firing rate is plotted as a function of increasing currents
injected experimentally in the cell. The F/I response is a classic electrophysi-
ological parameter, and it has been characterized for a big number of cells. In
general, there are two big families of neurons grouped by the shape of their F/I
curve:

• Type I neurons

• Type II neurons

2.4.1 Type II Neurons

Type II neurons are characterized by a discontinuity in their F/I curve, that is
actually what we get from an Hopf bifurcation (fig. 2.11). Increasing the current
in the beginning will trigger no action potentials, but crossed a certain threshold
the firing rate will jump to some discrete value. This is typical of pyramidal
cells, fast sensory neurons in the brainstem, coincidence detectors and rhythm
generators.

2.4.2 Type I Neurons

Type I neurons, on the other side, do not show such a discontinuity in the
curve: the firing frequency at the transition point is infinitely low and it increase
assuming every arbitrarily low value of firing frequency (fig. 2.11). The neurons
belonging to this category are typically interneurons and neurons that act as
signal integrators. They are cells with low input resistance. The property of
having arbitrary low firing rates seems to be in conflict with the concept of Hopf
bifurcation we had. How should the derivatives vector field and the nullclines
be shaped in order for the neurons to have this property?

First of all, since the function for the V term derive from the current balance
equation, it is reasonably the same also for this kind of neurons. The nullcline
that is affected the most by the composition in channels is the U-nullcline. For
having arbitrarily low firing rates we need a broad region of the phase space
where the length of the derivative vectors - i.e. the rate of change of the system
- is low. Since the length of this vector along the two axes is 0 along the
nullclines, we can expect it to be low near the nullclines. Since we need to be
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Figure 2.12: Phase space for neurons of the first type. They spend most of
the time in the part of the trajectory depicted in gray, the slow corridor near
the nullclines. Here we are close to both the nullcline, and so the vector field is
small in both the dimention, and the system is moving slowly.

close to both nullclines, we can expect that the shape of this new U-nullcline
follows in at least part of the phase space the V-nullcline.

This is actually what happens in the Type II neurons phase space. In the part
of the space when the two nullclines run close to each other we have a ”slow
corridor” where the system is moving extremely slow. Note also that the system
is progressing in this region between one spike and the other: this means that
the dynamic of the action potential itself is very similar for the two types, and
what changes the most is just the evolution of the potential between spikes.

This bending in the shape of the U nullcline will change the behaviour of the
system when the current is 0: we will have now three different fix points instead
of one. As we increase the current, two of them will collapse in one single point
and then vanish, similarly to what was happening for the quadratic integrate-
and-fire model. This is the so called saddle-node bifurcation. Even when the two
fixed point have vanished, their ”ghosts” represents regions where the system is
evolving extremely slowly, in the slow corridor.

What does this difference means in terms of the behaviour of the neurons? To
understand that, we need to introduce the concept of phase response curves.

2.4.3 Phase Response Curves (PRCs)

Let’s assume that when injected with some current I a neuron fire with some pe-
riod T (I) between spikes. Now we can think of ”perturbing” (changing slightly
the value of the voltage, e.g. with an EPSP) the evolution of the membrane
potential and see how this deviation from the periodic orbit affect the time
of the following spike. The effect of the perturbation will depend both on its
amplitude and its time during the cycle between two spikes. What we want
to analyse is then TI(t

∗, ε), where t∗ is the time of the perturbation and ε its
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Figure 2.13: Perturbation of a neuron firing periodic action potentials. We
can imagine the perturbation as an EPSP of amplitude ε that falls at a time
t∗ from the beginning of the cycle (set to the action potential in the graph).
Depending on the exact time t∗, the system can prolong the period, thereby
shifting negatively the phase of the following oscillations (top), of shorten it,
shifting the phase positively (bottom).

amplitude. If we assume that the perturbation is very small, we can linearly
approximate it near ε = 0:

TI(t
∗, ε) = T (I) + ε

dT (t∗, ε)

dε

∣∣∣∣
ε=0

(2.36)

= T (I)(1− εφ(t∗)) (2.37)

Where the term φ(t∗) is simply the calculated derivative from the first equation.
This term is called the phase response curve (PRC): its sign will tell us if the
period is made longer compared from the initial value T (I) or shorter. Note
that once we have done the linear approximation it has became a function of
the sole term t∗.

If we imagine the spiking of the neuron as a cyclic oscillation, we can think of an
elongation or shortening of the period as movement in one direction or the other
of the phase of the oscillation. A longer period will correspond to a backward
shift in the phase:

φ < 0

T (t∗, ε) > T (I)

So far we have not related this analysis in any way to our model; what would
happen if we do this kind of PRC analysis for neurons of the two types?
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Figure 2.14: The figure shows how the cyclic spiking of a neuron can be though
in terms of an oscillation with its phase. On the right, the mapping of different
points of the oscillation of period T that goes from the end of an action potential
to the begin of the new one, mapped onto the cyclic trajectory of the system in
the phase space.

2.4.4 PRC for Type I Neurons

To have an intuition about the effects of a perturbation we need to consider the
phase space and how move the system in a certain direction for the perturbation
will affect its trajectory. If we apply a positive perturbation in the voltage, we
will shift the system toward the right in our phase space; this means that it will
accelerate it when it is moving rightward (anticipation of the phase, φ > 0), and
slow it down when it is moving rightward (delay of the phase, φ < 0). Moreover,
remember that the time of the perturbation during the cycle of one oscillation
is indicated by the value t∗. A type II neuron spends a significant amount of
time in the slow corridor region, where the perturbation anticipate the phase;
this means that for most values t∗ the shift will be positive, and only for a short
initial time it will be negative.

2.4.5 PRC for Type II Neurons

Type II neurons on the other side spend most of their period in the region on
the left of the V nullcline. in this region rightward deflections of the trajectory
will move the system far from its orbit. This means that it will need some time
to go back to the cyclic attractor before continuing in the oscillation, i.e. there
will be an elongation of the period or backward shift of the phase (φ(t∗) < 0).
At certain point of the orbit t∗ the perturbation will shift again the system
in the direction of its trajectory, thereby producing a progression of the phase
(φ(t∗) < 0). Still, the part of the curve below zero will be much longer for a
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Figure 2.15: (above) A schematic of how the perturbation can affect the system
in different points of the cyclic trajectory. (below) The effects on the phase as
reported in the phase response curve. Note that in the case of Type I neurons
there is a broad range of values that produce always positive shifts, due to the
time that the system spends in the the slow corridor where the perturturbation
accelerates the system. On the other side, type II neurons spend a lot of time
in the region on the left of the V nullcline, where the perturbation moves the
system far from its attractor and makes the period longer.
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Type II neuron compared to a Type I one.

2.5 Dynamics of Type I II Networks

. What happens if we try to link together more neurons of the same type with in-
hibitory or excitatory synapses? We can observe the effects they have onto each
other by postulating a steady-state condition for the starting firing frequency
of the two neurons and pretending that synaptic EPSPs act as perturbations of
the oscillation. In this way, we can simply look at the graph for φ in order to
understand what will happen to the network.

Excitatory Coupled Type I Neurons

The situation for this first kind of simple network is schematised in fig. 2.16. We
assume that the two neurons are firing with some steady state frequency spikes
that are represented by the continuous lines in the figure. Each spike acts as
a perturbation on the other neuron, with positive sign since the synapses are
excitatory.

The first spike produced by the neuron 1 (1.1) will fall immediately before the
spike of the second neuron; by looking at this point in the phase response curve
we can see that it should produce a delay (point a), therefore the true spike
of neuron 2 (dashed line, 2.1) will be delayed. In turn this will fall at the
beginning of the oscillation of neuron 1, producing a very small anticipation.
This will move backward the spike 1.2, that in turns will delayed even more
the phase of spike 2.2. The two processes keep balancing in opposite directions,
and they will never end up synchronized. Moreover, the final frequency will be
lower than the initial one.

Excitatory Coupled Type II Neurons

In the case of excitatory coupled neurons of type II things changed given the
difference in the PRC. The spikes are driven in opposite directions in the two
neurons. One will gradually anticipate, while the other will be more and more
delayed, and they will eventually end up synchronized.

Inhibitory Coupled Type I Neurons

In the case of inhibitory coupled neurons, the PRC is flipped upside down for
the change of sign of the perturbation. In this case, spikes of neuron 2 will
become gradually less delayed over time, and it will eventually be reached by the
progressive delay of spikes of neuron 1. In the end they will be synchronized, and
the final frequency will be smaller than the initial one. This is the mechanism
that is hypothesized be the base for gamma oscillations (the so called ING model
for gamma oscillations).
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Chapter 3

Cable Theory

3.1 Derivation of the Cable Equation

So far we have been working with point neurons. We now address the following
question: what happens when we give spatial dimensions to our neuron?

We can begin with approximating a dendrite to a cable of infinite length, with
diameter d. The capacitance per unit of length will therefore be:

cm = πdCm

Where Cm is the specific capacitance (F/m2) and cm, the linear specific ca-
pacitance will be F/m. Similarly, if the specific membrane resistance is Rm in
Ω ·m2, the linear membrane resistance will be:

rm =
Rm
πd

With units Ω · m. The greater the circumference of the dendrite, the greater
the area for charge to escape through its membrane, and therefore the lower the
membrane resistance; and the more membrane available to store charge, there-
fore the higher the capacitance. Finally, we know that ions can flow through
the intracellular space. The resistance of a cable is proportional to its length
divided by the area, therefore the resistance per unit of length is:

ri =
Ri

d2/4π

And it will have the dimension of a resistance per unit of length (Ω/m - therefore
Ri is in Ω ·m).

We can imagine that each point of the dendrite over time can have a different
voltage; i.e., voltage is a function of both space and time, V (x, t). For each
point x we can have two different kind of currents: one current Im(x) across the
cell membrane, and one current Ii(x) flowing inside the dendrite according to
differences in voltage of different sections of the dendrite. At a certain time t,

47
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Ii(x) will be given for each segment dx by the infinitesimal difference in voltage
dV :

Ii(x) =
1

ri

dV

dx
(3.1)

Where ri is the intracellular resistance of the cable.

To calculate Im(x), the fundamental intuition is that for the Kirchhoff current
law, the sum of all the currents that enter an infinitesimal segment dx must be
0. The currents that enter one segment are Ii(x), −Ii(x+dx) and Im(x)dx (this
last term is multiplied by dx because Im(x) is flowing for each unit of length).
Therefore:

Ii(x)− Ii(x+ dx) + Im(x)dx = 0 (3.2)

Or:

Im(x) =
Ii(x+ dx)− Ii(x)

dx

That is exactly the definition of the derivative dIi(x)/dx. Using equation 3.1:

Im(x) =
dIi(x)

dx
=

d

dx

(
1

ri

dV

dx

)
=

1

ri

d2V

dx2
(3.3)

But we also know that (assuming Er = 0?) the current through a passive
membrane is equal to:

Im(x) =
1

rm
V (x) + cm

∂V

∂t
(3.4)

Equating 3.1 with 3.3 we get:

1

ri

d2V

dx2
=

1

rm
V (x) + cm

∂V

∂t
(3.5)

And rearranging the terms:

rm
ri

d2V

dx2
= V (x) + τm

∂V

∂t
(3.6)

Where τm = rmcm is the time constant of the membrane. This is a partial
differential equation that gives us the evolution of the voltage V (x, t) in space
and time.

3.2 Steady-state Solution for the Cable Equa-
tion

We can study our system in the simple steady-state situation, where the system
has reached equilibrium and is stable over time (∂V/∂t = 0). In this case 3.6
reduces to:

rm
ri

d2V

dx2
= V (x) (3.7)
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Figure 3.1: Compartmental modelling.

This is a simple second order linear differential equation. It is trivial to verify
that the solution is:

V (x) = V (0)e−
x
λ (3.8)

Where

λ =

√
rm
ri

This solution tells us that if at a point x = 0 the cell voltage is V0, this potential
will propagate to adjacent compartments decaying exponentially with a space
constant λ. The bigger λ, the better the propagation of the potential. Using
the definition we had for ri and rm λ can be written as:

λ =

√
rm
ri

=

√
Rmd2π

Ri4dπ
=

√
4

d

Rm
Ri

(3.9)

Where, remembering that [Rm] = Ω ·m2 and [Ri] = ω ·m:

[λ] =

√
m · Ω ·m2

Ω ·m
= m

Therefore, λ has the unit of a length (m or cm, depending on the definition
of Ri and Rm). This means that the bigger the constant λ, the longer the
potential propagate in the steady state. As we can imagine, a large Rm means
that the current leakage across the membrane will be low and the potential will
propagate better; on the other side, increasing the intracellular resistance will
decrease the intracellular flow of current compared to the current leakage across
the membrane, and will make the propagation of the potential worse.

3.3 Compartmental Model for Dendrites

The equation we have derived in the previous paragraph applies only to the
very simplified case of a linear dendrite of infinite length and homogeneous
biophysical properties. For dealing with more realistic models of dendrites, with
the possibility to introduce dendrite branching points and variate conductances
and other features in different part of the cell, we can introduce the tool of
compartmental modelling.
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Compartmental modelling build on the idea that we can chunk the dendrite
in a discrete number of segments that can be treated as point (fig. 3.1). Each
punctiform segment will be connected to its neighbours, and from each segment
the current can flow either in the adjacent compartments or outside the cell.
Therefore, remembering that the current flow into neighbours compartments
is driven by differences in voltage, for every compartment j we can write the
current-balance equation as

Iextj = (Vj − EL)gL + (Vj − Vj−1)gi + (Vj − Vj+1)gi (3.10)

Rearranging the terms we get:

(gL + 2gi)Vj − giVj−1 − giVj+1 = Iextj + ELgL (3.11)

This is valid for every compartment except for the first one, j = 1, which will
have no Vj−1 term:

(gL + gi)V1 − giV2 = Iext1 + ELgL (3.12)

And the last one, j = N , which will have no Vj+1 term:

(gL + gi)VN − giVN−1 = IextN + ELgL (3.13)

3.3.1 Analogies with the Analytical Solution

Now, we can see that using linear algebra there is a much shorter way to write
together the equations for all compartments at once. We can define the vector
with the voltages for every segment j:

v = (V1, V2, ..., VN−1, VN ) (3.14)

Then, by looking at the terms that multiply the voltages in equation 3.13, we
can think of introducing a matrix designed in this way:

MN,N =



gi + gm −gi 0 0 · · · 0 0
−gi 2gi + gm −gi 0 · · · 0 0
0 −gi 2gi + gm −gi · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2gi + gm −gi
0 0 0 0 · · · −gi gi + gm


We can now see that the right term of equation 3.13 can be written as the
product Mv. Finally, we introduce two other vectors for the injection and the
leakage currents iext and iL, such as:

iext = (Iext1 , Iext2 , ..., IextN−1, I
ext
N )

iL = (IL1 , I
L
2 , ..., I

L
N−1, I

L
N )

Now equation 3.13 can be entirely restated in a vectorial form as:

Mv = iext + iL (3.15)
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Now, note that the matrix M can be also rewritten separating the gm from the
gi terms in this way:

MN,N = −gi



−1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −2 1
0 0 0 0 · · · 1 −1


+ gmI

Where I is the identity matrix,

I =


1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .


The interesting thing about this expression is that, in the case of external current
Iextj = 0 for all compartments, if we rescale the potential to maje EL = 0, once
we plug it back into 3.15 we get:

MN,N = −gi


−1 1 0 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 · · ·
0 0 1 −2 · · ·
...

...
...

...
. . .

v + gmIv = 0

Now, the general form of this equation is strikingly similar to the steady state
analytical solution (equation 3.7), when we had:

−gi
∂2V

∂t2
+ gmV = 0 (3.16)

In this case the matrix with −2 on the diagonal 1 nearby takes the place of the
second derivative. We can imagine then that apply a matrix of this form to a
vector v is the discrete analogue of calculating its second derivative.

3.3.2 Implementing Temporal Dynamics

So far we have excluded capacitances from our model, and, with them, any
interesting evolution of the system in time. If we want to reintroduce them ,
it is quite easy: we just have to add the capacitative current to our current
balance equation:

(gL + 2gi)Vj + Cm
∂Vj
∂t
− giVj−1 − giVj+1 = Iextj + ELgL (3.17)

Using discrete time steps ∆t

Cm
∂Vj
∂t
≈ Cm

V (t)− V (t− 1)

∆t
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Figure 3.2: Branching compartments.

We can then rearrange the current balance equation to:

(gL + 2gi +
Cm
∆t

)Vj − giVj−1 − giVj+1 = Iextj + ELgL +
Cm
∆t

Vj(t− 1) (3.18)

And this can be again translated in the matrix form, with the addition of Cm/∆t
on the diagonal terms and the new vector of values at the previous time step
v(t− 1) = (V1(t− 1), V2(t− 1), ..., VN (t− 1))

3.3.3 Branching Compartments

The power of the matrix form for the compartment model become clearly evident
when we analyse the case of branching compartments. In this case, the first step
is to find a convenient way to numerate the compartments. Once we have done
that, describe new connections between non-consecutive compartments can be
accomplished simply by adding new −gi terms in the respective positions in the
equivalent matrix. We will now write the connection matrix for the branching
scheme reported in fig. 3.2. Here the compartment n.3 is connected on one side
to compartment n.2 and on the other on compartment n.4 and 6. To implement
this configuration in our matrix, we will just have three off-diagonal terms −gi
in the 4th row and column (in the positions 3, 4 and 6). Note that we also have
to increase by one the 2gi term on the diagonal: the sum of each column and
row must remain 0. For our example then the connection matrix will be:

MN,N = −gi


−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −3 1 0 1
0 0 1 −2 1 0
0 0 0 1 −1 0
0 0 1 0 0 −1

v + gmIv = 0

The connection matrix reproduces in a synthetic way the connectivity of the
compartments. No matter how complicate the wiring diagram, this approach
will always gives us a convenient way to deal with the evolution of voltages in
every compartment of the model.
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3.3.4 Active Compartments

Another crucial tool for compartmental modelling is the possibility to make
some compartments active. Implementing this numerically in our model is quite
easy. We can just assume that the conductances of one specific compartment
are affected only by the voltage at that compartment. Therefore, we will just
have to introduce some new vectors m(t), h(t) and n(t) that will give us the
state of gating variables at each compartment of the cell. We can implement
this numerically simply by setting the starting values for the voltage (v0) and
for the gating variables (m0, h0 and n0) and then on a step by step basis use
their value at the time t− 1 to predict their current value at time t. In this way
we can analyse a wide spectrum of cases where we can make one, a few, or all
compartments active to study the propagation of the action potential.

3.4 Another View on the Cable Equation

We have seen that the cable equation that describes the propagation of a po-
tential in space and time throughout a cylindrical dendrite of infinite length has
this form:

τ
∂

∂t
V (x, t) = V (x, t) + λ2

∂2

∂x2
V (x, t) (3.19)

As we have said, this is a partial differential equation, and it contains a leak
term −V (x, t), which describe the flow of ions across the membrane, and a
diffusion term ∂xxV (x, t), which tells us how diffusion is happening inside the
cable under a certain configuration of the potential. We can look at it as the
function describing the diffusion of ion charges along the cable. Why diffusion
should goes with the second derivative of the voltage? If we imagine to have a
voltage that grows linearly throughout the cable, for every point x0 there will
be the same number of particles moving toward it on one side and far from it on
the other, because the difference of potential will be the same between x0 + dx
and x0 − dx for a straight line. In this case we will have only an exponential
decay of the potential through the membrane, happening at the same pace at
all points of the line, and at any time t the potential at every point of the cable
Vt(x) will still be linear.

If we want to have some significant effect of diffusion on the concentration of
charges at one point x0 + dx and x0 − dx must be different. This happens
have some bending of the curve, which in mathematical terms translates into a
non-zero second derivative.
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V(x)

V(x)

x

x

t

x0 x +dx0x -dx0

V(x ) - V(x -dx)0 0

V(x +dx) -V(x ) 0 0

x0

Figure 3.3: Effects of distribution of intracellular potential along the linead
dendrite and diffusion of charges. Here Vt(x) is the potential at a certain time t
as a function of x. (above) linear case: the second spatial derivative ∂xxVt(x) =
0: the number of particles that flow into the point x0 on one side is balanced
by the number of charges leaving it on the other, and the net diffusion is 0.
(below): nonlinear case; here ∂xxVt(x) > 0, and we will have a net influx of
charges at the point x0.



Chapter 4

Modelling Synapses

4.1 Synaptic Currents

We can describe a generic synaptic current as:

Isyn = gsyn(V − Esyn) (4.1)

Where each neurotransmitter will have its own conductance and resting po-
tential. For example, the resting potential for a typical glutamatergic synapse
Eglut will be around 0. Since it is permeable to several ions (sodium, potas-
sium, calcium), this voltage is some weighted average of the resting potentials
for these ions. For GABAergic synapses, permeable to chloride and carbonate,
EGABA ≈ −90.

The conductance is the term that confer to the synaptic current its temporal
evolution. It is a term that somehow sums up all the processes that are at work
between the action potential of the presynaptic neuron and the synaptic po-
tential of the postsynaptic neuron. These processes are arbitrarily complicated
(voltage-gated presynaptic calcium conductances, exocytosis, diffusion, binding
of the neurotransmitter, post-synaptic channels opening) amd they involve huge
number of parameters (calcium channel kinetics, exocytosis dynamics, diffusion
constants, kinetic of post-synaptic channels opening, etc.). Still, since we can
experimentally observe the typical shape of the post-synaptic potential for a
given neurotransmitter and a given neuron, we can fit a curve with a shape that
describe it. A typical equation can be a difference of exponentials:

g(t) = ω(e−
t
τ1 − e−

t
τ2 ) (4.2)

A very simple way to deal with synaptic inputs in a neuron is to keep fixed the
shape of this curve for each synapse of a given neurotransmitter, and change
only the parameter ω, that describes the synaptic strength, or the amplitude of
the curve.
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4.2 Dynamical Synaptic Transmission

Here we want to find some mathematical description of the processes that un-
dergo synaptic transmission. A synaptic terminal is described mainly by three
parameters:

• Number of vesicles, R;

• Probability of release after action potential, p;

• Post-synaptic response amplitude for one vesicle, q.

With this parametrization, the final amplitude of the post-synaptic response
will be

A = Rpq (4.3)

And in the literature, this model is called the RPQ model for synaptic trans-
mission.

4.2.1 Synapse Dynamics: Synaptic Depression

The first thing that we will characterize about the synapse is the dynamics of
the pool of vesicles, of size R. We can do it starting from these assumptions:

• The resting state dimension of the pool is R0;

• The dynamics of the pool follows a first order kinetics;

• Each action potential trigger the release of a constant fraction of the avail-
able pool, thereby decreasing the number of available vesicles by uR (u
can be roughly considered a probability of release - even though it is not
exactly that, for reasons that I do not recall).

Under these assumption, the equation that will describe the change of vesicles
over time (postulating a continuous number of vesicles):

dR

dt
=
R0 −R
τV

− δ(t− tsp)uR (4.4)

Where the first term drive an exponential recovery of the storage after every
depletion, while the second term at any time tsp when a spike happens subtracts
the amount uR to the existent pool.

The evolution of the system is represented in fig. 4.1. Here, R(t+sp1
) represents

the value of the store immediately after the first spike. We do not consider
anything before this point; instead, we look at the values R(t−sp2

) (vesicles im-
mediately before the second spike) and R(t+sp2

) (immediately after).

R(t−sp2
) and R(t+sp2

) will differ only for the amount of vesicles depleted by the
second action potential, which are uR(t+sp2

):

R(t+sp2
) = R(t−sp2

)− uR(t−sp2
) (4.5)
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Figure 4.1: Temporal evolution of the pool size R when pre-synaptic spikes
happen at the times tsp1

and tsp2
. The exponential recovery tend to the resting

value R0.

To find out the value R(t−sp2
) we need to analyse the recovery dynamics from

the previous spike. We know that the solution for the differential equation 4.4
is an exponential; can drop some algebraic passages and write:

R(t−sp2
) = (R(t+sp1

)−R0)e
−
t+sp1

−t−sp2
τV +R0 (4.6)

And pooling together these two equations we arrive to:

R(t−sp2
) = (R(t−sp1

)− uR(t−sp1
)−R0)e

−
t+sp1

−t−sp2
τV +R0 (4.7)

This has become a discrete dynamical system: even if we started with a contin-
uous time, now the value before any new spike n is just a function of the value
before the precedent spike n− 1:

Rn = R(t−spn)

Rn+1 = ((1− u)R(t−spn)−R0)e
∆tn

τV +R0

where ∆tn = t+spn−1
− t−spn .

This equation recurrently applies to all the pre-synaptic spikes of the time series,
and in order to find the value Ri we need to know the times of all the previous
spikes:

{tsp(i)} → Ri (4.8)

We can analyse the behaviour of the system under the assumption of a constant
firing rate r, so that:

∆tn =
1

r
= const.

In this situation we know that the system will eventually reach a steady state,
i.e., a situation where the number of vesicles becomes constant:

Rn+1 = Rn = R∗ (4.9)



58 CHAPTER 4. MODELLING SYNAPSES

Knowing this:

R∗ −R0 = ((1− u)−R0)e
− 1
τV r (4.10)

After a few algebraic passages we can rearrange the equation in terms of R∗:

R∗ = R0
1− δ

1− δ(1− u)
(4.11)

Where δ = e
− 1
rτV .

The term δ is a function of the firing rate r. Its limits are the following:

lim
r→+∞

δ = 1

lim
r→0

δ = 0

And, once plugged in equation 4.11 they make sense, since for infinite firing rates
the vesicles are completely depleted and for firing rate 0 they are untouched:

lim
r→+∞

R∗ = 0

lim
r→0

R∗ = R0

The shape of the function R∗(r), the vesicle pool dimension as a function of the
firing rate r, is depicted in fig.X. This function depends on the parameters τV
and u, and they can be fitted from experimental data. A typical value for τV is
about 100 ms.

Since, before reaching the steady state, the size of the pool will decrease at
every new action potential (Rn+1 < Rn), this phenomenon is called synaptic
depression: it will drive a decrease of post-synaptic potentials for later spikes of
the train.

4.2.2 Synapse Dynamics: Synaptic Facilitation

The dimension of the vesicle pool R is not the only parameter that can change
over time. Also the pq term, also grouped under one single variable y (they are
difficult to isolate experimentally). Since both the probability of release and
the post-synaptic amplitude depends on intracellular calcium concentration, we
can imagine that they will have a facilitating dynamics with the increasing of
firing rate: previous spikes will leave high intracellular calcium concentrations
that in turn will produce higher release amplitudes for the subsequent spikes.
The equivalent of equation 4.4 for the release probability will now be:

du

dt
=
y0 − y
τf

+ δf(ymax − y) (4.12)

The first term gives the recovery dynamics of calcium; the second term the
increase in release probability given by any new spike. Note that the presence
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Figure 4.2: Temporal evolution of transmission efficacy y when pre-synaptic
spikes happen at the times tsp1

, tsp2
and tsp3

. The exponential recovery tend
to the resting value y0, while the ceiling effect limit the effects of the spikes for
increasing y to the max ymax.

of ymax gives a ceiling effect: the facilitation will not grows indefinitely, but only
to a maximum value ymax. The evolution of this system is depicted in fig. 4.2

By passages that are fully analogous to the previous case of synaptic depression,
we can come out with this equation (equivalent to equation 4.7)

yn+1 = (yn(1− f) + fymax)e
−∆t
τf + y0(1− e−

∆t
τf ) (4.13)

Again, we can analyse the case of a constant firing frequency r at the steady
state, when yn+1 = yn = y∗. Again, with some algebraic passages that we are
dropping here, we arrive to:

y∗ =
y0(1− δ) + fymaxδ

1 + δ(1− f)
(4.14)

in this new case:

lim
r→+∞

y∗ = ymax

lim
r→0

y∗ = y0

With increasing firing rate the function for y will exponentially go to ymax.

4.2.3 Combining Facilitation and Depression

We know that the post-synaptic amplitude is a function of both the dynamics
for R and y. What happens when we combine them? We can compute each
of the two independently, since they are not interdependent, to calculate the
steady state amplitude A∗ = R∗y∗. Depending on the dimensions of the two
time constants τf and τV we can have two different cases, represented in fig. 4.3:
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Figure 4.3: Amplitude of post-synaptic potential as a function of input rate r
for facilitating and depressing synapses.

• τf > τV : facilitating synapses. In this case the replenishment of the vesicle
pool has a short time constant - i.e., it happens very fast and the depletion
of the storage is negligible at low r; we will have an immediate phase of
facilitation, followed by a depression for increased frequencies;

• τf < τV : depressing synapses. In this case the facilitation happens slower
than the depletion, and the net result will be a decrease to 0 to the post-
synaptic amplitude. Note that this happens even if we still have the
facilitating term.

The facilitating synapse acts as a frequency filter: inputs coming with the correct
frequency will produce an increase in post-synaptic amplitudes compared to
other input frequencies. This may have physiological relevance, and indeed it
has been observed in electrically active fishes, where the electrosensitive neurons
are matched in terms of optimal synaptic response frequency with the frequency
they use for producing the electric field with the electric organs.

This kind of models for synaptic facilitation and depression are known under the
name of Tsychyhs-Markram models, from the names of the people that made
them famous.

4.3 Local Field Potential (LFP)

4.3.1 Electric Fields in the Vacuum

We start this section with a brief recap about electric fields in the vacuum. In
general, a point charge q will produce an electric field that goes with the inverse
square of the distance from the point (bold variables are vector quantities):

E =
q

|r|2
r

|r|
(4.15)

Instead of using the vector field E we can define a scalar function φ such as its
gradient (derivative in more dimensions) will gives us the electric field:
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E(r) = −∇φ(r) (4.16)

This function is called the electric potential. For a point charge,

φ(r) =
q

r
(4.17)

In the case of multiple charges, they will add linearly:

φ(r) =
∑
i

qi
|r − ri|

(4.18)

Now we can substitute the presence of discrete charges qi with a continuous
charge density ρ(r), which will give us the charge per unit of volume for every
point of the space r. In this way, the sum becomes an integral:

φ(r) =

∫
V

ρ(r)

|r − x|
dx (4.19)

This equation comes as a solution for a partial differential equation called the
Poisson equation:

−∇2φ = 4πρ(r) (4.20)

Where the operator ∇2, the so-called Laplacian, is defined as the sum of the
second-order spatial derivatives in the three dimensions:

∇2 = ∂xx + ∂yy + ∂zz (4.21)

4.3.2 Electric Fields in Biological Tissues

All these equations hold in the vacuum. In matter things are more complicated:
the presence of an electric field will make the charges move, which in turn will
change the electric field. Still, to describe the movement of charges under the
influence of the field we can use a big simplification that has been proved quite
valid for biological tissue, i.e., that it acts as an Ohmic material. In an ohmic
material the relationship between charge movements and the electric field is
linear:

j(r) = σE(r) (4.22)

Where j is the vector field which describe the flow of current in every point of
the space r, E is the electric potential and σ is the conductivity, which tells
us the efficacy of the electric field in generating a current (when it is 0, we will
have no charge movement). Then, using our definition for φ:

j = σ(−∇φ) (4.23)

Now we can apply to both sides the operator divergence1. Calculating the
divergence requires taking the scalar product of the vector with a vector of its

1The divergence of a vector field tells us how many particles or charges are leaving from
one point. If we imagine the vector field to be arrows, a point with high divergence will have
many arrows pointing outwards, and only a few pointing towards it. A point with 0 divergence
will have as many arrows pointing toward it as arrows pointing outwards.
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derivatives:

∇ · j =

∂x∂y
∂z

jxjy
jz

 =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
j (4.24)

For the potential term:

∇ · (−σ∇φ) = −σ

∂x∂y
∂z

∂x∂y
∂z

φ = −σ
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
= ∇2φ

where the term nabla2, the so-called Laplacian (also indicated as ∆), is a new
operator, the sum of the the second derivatives of the scalar function φ.

Plugging back these two new definition in the original equation, we get:

1

σ
∇ · j = −∇2φ (4.25)

And this is equivalent to the Poisson equation we were talking about for the
void case, equation 4.20. It will therefore have a similar solution, i.e. a solution
in the form of equation 4.19:

φ(r) = − 1

4πσ

∫
V

∇ · j
|r − x|

dx (4.26)

This means that in the tissue the description of the voltage is very similar to
the void case once we replace the charge density ρ with the divergence of the
current density ∇ · j.

As we were previously mentioning, divergence is the measure of ”how many
arrows” are coming out of each point of the vector space. But if in one point of
the space the current arrows pointing inward are less than the current arrows
pointing outward, it means that there is more charge leaving the point than
charge entering it, i.e., we will have a change in the charge density for that
point, and viceversa. Then, in general, the divergence of the current field j tells
us the time derivative of the charge density:

∂ρ(r

∂t
) = −∇ · j (4.27)

[here, a brief useless mention to the Gauss theorem].

We can conclude that, in general, in the case of matter the term ∇ · j take the
role of ρ in the vacuum. We will call this term current source density, since, as
we mentioned, it tells us how many charges are sourcing or sinking in a point
of the space.
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4.3.3 Current Source Density and Compartment Models

This is extremely important, since it is a way to link the potential of the extra-
cellular media to the current sources that occupies it, i.e. neurons. Any time
some neural activity is going on, charges will enter or leave the neurons, thereby
generating current fields with non-zero divergence2. We have already studied
models for the currents that are moving in and out neuronal compartments. In
general, we have the equation

C
dV

dt
=
∑
x

Ix + Iax (4.28)

That can be applied for every single compartment (Ix are currents of differ-
ent ionic nature flowing through the membrane, and Iax is the current flowing
through the dendritic cable). We can simply plug the term for membrane cur-
rents into equation 4.26 to get:

φ(r) = − 1

4πσ

∑
i

∑
x I

(i)
x

|r − ri|
(4.29)

For every dendritic compartment i and its xi transmembrane currents .

From this we can conclude that:

• The local field potential drops as 1/r

• The local field potential is deeply affected by the geometrical relationships
of the considered neurons. For example, if one neuron is moving out
positive charges, and another one negative one, there will be a strong field
between these two neurons. Anyway, as soon as ve move a little bit far
from them they will cancel out with each other, and we will have a very
small final effect3.

To observe strong signal in the local field potential (and in the EEG as well)
therefore we need:

• Strong temporal synchronization;

• Strong spatial synchronization.

Many neurons in the same area must respond in the same way for us to see
them.

2If we look at the channel from outside, it is a point where charges from all the space
are coming in (arrows toward) or coming out (arrows outward) - i.e., a point of non-zero
divergence

3In this case they act as a dipole, whose field far from the charges drops as 1/|r3|


